
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 24
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

ENHANCED SHUFFLE GROUPING FOR STREAM PROCESSING IN
BIG DATA ANALYTICS

Sathyapriya N , Sandhiya D, Saisree K, Moorthi K
Department of Computer Science and Engineering,

Jansons Institute of Technology.
sathyapriya.rajan@gmail.com, sandhiya.d96@gmail.com, saisreekrishnan@gmail.com,

moorthicse@gmail.com

Abstract
Stream processing systems perform

analysis on continuous data streams. A stream
processing application contains data operators
and streams of tuples containing data to be
analysed. Grouping function strategy routes
the tuples towards the operator instances.
Shuffle grouping is a technique used by stream
processing frameworks to share input load
among parallel instances of stateless operators.
With shuffle grouping each tuple of a stream
can be assigned to any available operator
instance, independently from any previous
assignment. A common approach to
implement shuffle grouping is to adopt a round
robin routing policy, a simple solution that
adapts well as long as the tuple execution time
is constant. In shuffle grouping each operating
instance gets equal number of tuples.
However, such assumption rarely holds where
execution time strongly depends on tuple
content. As a result, parallel stateless operators
within stream processing applications may
experience unpredictable unbalance that
causes undesirable increase in tuple
completion time. Proactive Online Shuffle
Grouping (POSG), a novel approach to shuffle
grouping aims at reducing the overall tuple
completion time. POSG estimates the
execution time of each tuple, enabling a
proactive and online scheduling of input load
to the target operator instances. Sketches are
used to efficiently store the otherwise large
amount of information required to schedule
incoming load.
Keywords: real-time data, Stream Processing,
Shuffle grouping, Count Min sketch
Algorithm, Greedy Online Scheduler.

I. INTRODUCTION
Any data that exceeds our current

capability of processing can be regarded as
“big”. Big Data are high-volume, high-velocity,
and high-variety information assets that require
new forms of processing to enable enhanced
decision making, insight discovery and process
optimization. One can take data from any source
and analyze it to find answers that enable cost
reductions, time reductions, new product
development and optimized offerings. Data and
analytics centricity is a state of being where big
data analytics are available to all the parts of the
organizations that needed them. With the
underlying infrastructure, data streams and tool
sets are required to discover valuable insights
solve actual business problems. Continuous real
time data arrives at very high rate from various
remote sources which should be processed and
analysed simultaneously.

Analytics falls along a spectrum; one
end is batch analytical applications (Hadoop
based workloads) which are used for complex,
long running analyses. They tend to have slow
response time. Real-time analytical applications
forms the other end of the spectrum. It provides
faster light weight analytics with low latency
and high availability requirements by offering
distribution computation facilities. Several such
applications include share market and stock
trading, Web traffic processing, Network
monitoring, Sensor based monitoring, Click
streams, Social media and log data analyses etc.,
Issues in real time analysis include scalability,
processing storage, continuous streaming data,
need for special computational powers.

IJSER

http://www.ijser.org/
mailto:moorthicse@gmail.com

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 25
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

II. DISTRIBUTED STREAM
PROCESSING SYSTEMS

Stream processing is the real-time
processing of data continuously, concurrently,
and in a record-by-record fashion. It treats data
not as static tables or files, but as a continuous
infinite stream of data integrated from both live
and historical sources. It continuously performs
mathematical or statistical analytics using
“continuous queries”. Stream processing takes
the inbound data while it streams through the
server. It also connects to external data sources,
and allows applications to incorporate selected
data into its flow, and can update an external
database with processed information. Input
arrives very rapidly and there is limited memory
to store the input. Algorithms have to work with
one or few passes over the data, space less than
linear in the input size or time significantly less
than the input size.

Distributed Stream Processing
Systems(DSPS), offer a highly scalable and
dynamically configurable platform for time-
critical applications. DSPS have the ability to
process huge volumes of data with very low
latency on clusters of commodity hardware.
Streaming applications are represented by
Directed Acyclic Graphs (DAG), where vertices
called processing elements, representing
operators and edges called streams, representing
the data flow from one processing element to
next. DSPS consists of large number of
Processing Nodes (PN). Applications are
deployed on PNs as a network of operators or
Processing Elements (PEs).The grouping in
DSPS is usually implemented by partitioning
the stream by several methods such as key
grouping, shuffle grouping, field grouping,
partial key grouping, global grouping, none
grouping, direct grouping, local grouping and
more.

Data streams are feed into Distributed
Stream Processing Systems (DSPS). Each
processing element perform some operation on
the input stream such as filter, aggregate,
correlate, classify and transform. In order to
carry out the computation, the PE uses
computational resources of the PN on which it
resides. These resources are finite, and are
divided among the PEs residing on the node.

The output of this computation could alter the
state of the PE, produce an output with the
summarization of the relevant information
derived from (possibly multiple) input streams
and the current state of the PE.

Apache storm, a Distributed Stream
Processing System is scalable, fault-tolerant and
is easy to set up and operate. Storm’s use cases
include real time analytics, online machine
learning, continuous computation, distributed
RPC, ETL and more.It relies on a cluster of
heterogeneous machines. According to Storm
architecture, a machine, called a worker node is
composed of workers. Each worker contains a
variable number of slots. A slot is an available
computation unit which has dedicated CPU re-
sources. When an operator is affected to a slot,
it is encapsulated in an executor. According to
our generic architecture, processing units are
equivalent to workers. Each operator
corresponds to an executor.

Continuous queries are represented as
user-defined workflows, denoted as topologies.
These topologies are also workflows but
vertices belongs to two main categories: Spout
and Bolt. Spouts are data transmission nodes
and can be conceptualized as multiplexers. They
provide an interface between sources and
processing environment. After getting
connected to one or many sources, they transmit
data streams to one or many Bolts. Each Bolt
execute a user-defined operator which is
considered as atomic. Storm does not include
primitives but provides programming patterns.
Basically, Storm does not support stateful
operators, so naturally does not support window
incremental processing, but they can be added
through API extension. Allocation of executors
on workers is achieved by a scheduler
minimizing CPU and memory usage. Storm
targets applications handling huge volume of
data like social data management.

III. PROACTIVE ONLINE SHUFFLE
GROUPING

 Proactive Online Shuffle Grouping
(POSG), an approach in shuffle grouping that
aims at reducing the overall completion time of
incoming tuples by accurately scheduling it on

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 26
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

available operator instances thereby avoid
imbalances. POSG is the first solution that
explicitly addresses the problem of imbalances
in parallel operator instances under loads
characterized by non-uniform tuple execution
times.
 The basic idea behind POSG algorithm
is simple. By measuring the amount needed by
each operating instances to process every tuples,
we can schedule incoming tuples accordingly, in
order to minimize the completion time. This
approach works in the case of non-trivial
streaming settings. However, POSG uses
sketches in order to keep track of huge amount
of information regarding the tuple execution
time and then applies a greedy online
multiprocessor scheduling algorithm to
dynamically schedule incoming tuples to
operator instances. Concurrently, the status of
each instances is monitored in a smart way
which in turn used to detect possible changes in
the input load distribution that can be adapted
coherently. Therefore, POSG improves
performance in terms of tuple completion time.
 To be clearer, if the execution time of
each tuple on available operator instance is
known, it is easy to schedule the execution of
incoming tuples on such instances with the aim
of minimizing average per tuple completion
time at the operator instances. However, the
common way of calculating the execution time
of each tuples is by building cost model for
tuple execution and then utilizing it to schedule
the incoming load proactively. But building an
accurate cost model requires large a-priori
knowledge on the system. Furthermore, once
the system is built, it is hard to handle changes
in the system or input stream characteristics at
runtime. Another alternative is to periodically
collect the load of operator instances at
scheduler, which becomes reactive scheduling,
where the input tuples are scheduled on the
basis of previous load state of the operator
instances.
 Therefore, POSG computes the
estimation by summing the estimation of
execution time of each tuples assigned to each
operator instances. A greedy scheduling
algorithm is then fed with estimations for all the
available instances, which can be enabled by

building a sketch at each operator instances.
That sketch will track the execution time of the
tuples it process. Any change in the stream or
instance(s) affects the tuples execution time on
some instances. Therefore, the concerned
instance(s) will forward the updated sketch to
the scheduler, which allows the scheduler to
estimate the tuples execution time correctly.
This solution does not requires any a-priori
knowledge. This approach is also adaptable to
continuous changes in the input distribution or
on the instances load characteristics. Therefore,
this solution is proactive and avoids imbalance
rather than detecting and then attempting to
correct it.

IV. COUNT-MIN SKETCH ALGORITHM

 The Count-Min (CM) Sketch is a
compact summary data structure capable of
representing a high-dimensional vector and
answering queries on this vector with strong
accuracy guarantees. Such queries are at the
core of many computations, so the structure can
be used in order to answer a variety of other
queries, such as frequent items (heavy hitters),
quantile finding, join size estimation, and more.
Since the data structure can easily process
updates in the form of additions or subtractions
to dimensions of the vector (which may
correspond to insertions or deletions, or other
transactions), it is capable of working over
streams of updates, at high rates. The data
structure maintains the linear projection of the
vector with a number of other random vectors.
These vectors are defined implicitly by simple
hash functions. Increasing the range of the hash
functions increases the accuracy of the
summary, and increasing the number of hash
functions decreases the probability of a bad
estimate. These trade-offs are quantified
precisely below. Because of this linearity, CM
sketches can be scaled, added and subtracted, to
produce summaries of the corresponding scaled
and combined vectors.

The CM sketch is simply an array of
counters of width w and depth d, CM[1, 1] . . .
CM[d, w]. Each entry of the array is initially
zero. Additionally, d hash functions

h1 . . . hd: {1 . . . n} → {1 . . . w}

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 27
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

are chosen uniformly at random from a
pairwise-independent family. Once w and d are
chosen, the space required is fixed: the data
structure is represented by wd counters and d
hash functions (which can each be represented
in O(1) machine words.
Update Procedure: Consider a vector a, which
is presented in an implicit, incremental fashion.
This vector has dimension n, and its current
state at time t is a(t) = [a1(t), . . . ai(t), . . . an(t)].
Initially, a(0) is the zero vector, 0, so ai(0) is 0
for all i. Updates to individual entries of the
vector are presented as a stream of pairs. The ‘
t’ update is (it, ct), meaning that
ait (t) = ait (t − 1) + ct
ai (t) = ai 0 (t − 1) i’= it
This procedure is illustrated in Figure 1. In the
remainder of this article, t is dropped, and the
current state of the vector is referred to as just a
for convenience. It is assumed throughout that
although values of ai increase and decrease with
updates.

Figure 1:
Count
Min-Sketch

Each item i is mapped to one cell in
each row of the array of counts: when an update
of ct to item it arrives, ct is added to each of
these cells each ai ≥ 0. The Count-Min sketch
also applies to the case where ais can be less
than zero, with small factor increases in space.
Here, details of these extensions are omitted for
simplicity of exposition (full details are in [5]).
When an update (it, ct) arrives, ct is added to
one count in each row of the Count-Min sketch;
the counter is determined by hj. Formally, given
(it, ct), the following modifications are
performed: ∀1 ≤ j ≤ d : CM[j, hj (it)] ← CM[j,
hj (it)] + ct Because computing each hash
function takes O(1) (constant) time, the total
time to perform an update is O(d), independent
of w. Since d is typically small in practice,
updates can be processed at high speed.

V. GREEDY ONLINE SCHEDULER
ALGORITHM

 A problem in load balancing is
scheduling the important tasks to the identical
machines and thereby minimizing the execution
time i.e., the Multiprocessor Scheduling
problem. However, the algorithm that is optimal
for minimizing total flow time often starves
some individual tasks. This problem becomes
more complex when these tasks have priorities.
To overcome these issues, in POSG, greedy
online scheduler algorithm is used to schedule
online independent tasks on non-uniform
machines aiming to minimizing the average per
task completion time. Online means the
scheduler does not know the sequence of tasks it
is going to handle in previous. The Greedy
Online Scheduler algorithm assigns the
incoming task to the instance having less load.

In POSG, each operator instances maintains two
count-min sketch matrices, where the first
matrix monitors the frequency of rules and the
second matrix maintains the cumulative
execution time of rules. Both the matrices
shares same size and hash function. Both the
matrices are updated each time after tuple
execution by the operator instances.

VI . CONCLUSION

In this paper, various approaches for
stream processing in stateless operator instances
have been discussed. Shuffle grouping concepts
are briefly discussed along with the current
issues. Alternatives for the above stated
problems such as cost model estimation and
reactive scheduling were stated along with their
drawbacks. Then, Proactive Online Shuffle
Grouping, a novel approach to shuffle grouping
aimed at reducing the overall tuple completion
time by scheduling tuples on operator instances
on the basis of their estimated execution time
was introduced and discussed. POSG makes use
of sketch data structures to keep track of tuple
execution time on operator instances in a
compact and scalable way. This information is
then fed to a greedy scheduling algorithm to
assign incoming load. Thus, POSG provides
important speedups in tuple completion time

 +ct
 +ct
 +ct
 +ct

it
h1

hd IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 28
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

when the workload is characterized by stateless
operator instances.

VII. REFERENCES

[1] L. Amini, N. Jain, A. Sehgal, J. Silber,
and O. Verscheure, “Adaptive control of
extreme-scale stream processing
systems”,in Proceedings of the 26th IEEE
International Conference on Distributed
Computing Systems, ICDCS, 2006.

[2] G. Cormode and S. Muthukrishnan. An
improved data stream summary: The
count-min sketch and its applications.
Journal of Algorithms,55, 2005.

[3] Nicol_o Rivetti, Emmanuelle Anceaume,
Yann Busnel, Leonardo Querzoni, Bruno
Sericola, “ Proactive Online Scheduling
for Shuffle Grouping in Distributed
Stream Processing Systems”, HAL
archives, 2016.

[4] M. A. U. Nasir, G. D. F. Morales, D. G.
Soriano, N. Kourtellis, and M. Serani. The
power of both choices: Practical load
balancing for distributed stream processing
engines. In Proceedings of the 31st IEEE
International Conference on Data
Engineering, ICDE, 2015.

[5] M.G.Noll, “Implementing Real-Time

Trending Topics With a Distributed Rolling
Count Algorithm in Storm-2013”,
www.michael-
noll.com/blog/2013/01/18/implementing-
real-time-trending-topics-in-storm.

[6] Roland Kotto-Kombi, Nicolas Lumineau,
Philippe Lamarre, Yves Caniou, “Parallel
and Distributed Stream Processing: systems
Classification and Specific Issues”, HAL
archives,2015.

[7] N. Rivetti, L. Querzoni, E. Anceaume, Y.

Busnel, and B. Sericola. Efficient key

grouping for near-optimal load balancing in
stream processing systems. In Proceedings
of the 9th ACM International Conference
on Distributed Event-Based Systems,
DEBS, 2015.

[8] Supun Kamburugamuve,” Survey of

Distributed Stream Processing For Large
Stream Sources”, Phd Thesis,2013.

[9] Babcock, B., Datar, M., Motwani, R.: Load

shedding for aggregation queries over data
streams.In: Proceedings of 20th
International Conference on Data
Engineering, 2004, pp. 350–361.IEEE,
Boston (2004)

[10] Ryvkina, E., Maskey, A.S., Cherniack, M.,

Zdonik, S.: Revision processing in a stream
processing engine: a high-level design. In
Proceedings of the 22nd International
Conference on Data Engineering, 2006.
ICDE’06, pp. 141–141. IEEE, Washington
(2006)

[11] The Apache Software Foundation. Apache
Storm(http://storm.apache.org).

IJSER

http://www.ijser.org/

