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Abstract  
Stream  processing  systems  perform 

analysis on continuous data streams. A stream 
processing application contains data operators 
and streams of tuples containing data to be 
analysed. Grouping function strategy routes 
the tuples towards the operator  instances. 
Shuffle grouping is a technique used by stream  
processing  frameworks to share input load 
among parallel instances of stateless operators. 
With shuffle grouping each tuple of a stream 
can be assigned to any available operator 
instance, independently from any previous 
assignment. A common  approach  to 
implement shuffle grouping is to adopt a round  
robin routing policy, a simple solution that 
adapts well as long as the tuple execution time 
is constant. In shuffle grouping each operating 
instance  gets  equal  number of  tuples. 
However, such assumption  rarely holds where 
execution  time strongly depends on  tuple 
content. As a result, parallel stateless operators 
within stream processing applications may 
experience unpredictable unbalance that 
causes undesirable increase  in tuple 
completion time.  Proactive Online Shuffle 
Grouping (POSG), a novel approach to shuffle 
grouping aims at  reducing  the overall tuple 
completion  time. POSG estimates the 
execution  time of  each  tuple, enabling a 
proactive and online scheduling of input load 
to the target operator instances. Sketches are 
used to efficiently store the otherwise large 
amount of information required to schedule 
incoming load. 
Keywords:  real-time data, Stream Processing, 
Shuffle grouping, Count Min sketch 
Algorithm, Greedy Online Scheduler. 
 

 

I. INTRODUCTION 
Any data that exceeds our current 

capability of processing can  be regarded as 
“big”. Big Data are high-volume, high-velocity, 
and high-variety information  assets that require 
new forms of processing to enable enhanced  
decision making, insight discovery and process 
optimization. One can take data from any source 
and analyze it to find answers that enable cost 
reductions, time reductions, new product 
development and optimized offerings. Data and 
analytics centricity is a state of being where big 
data analytics are available to all the parts of the 
organizations that needed them. With the 
underlying infrastructure, data streams and tool 
sets are required to discover valuable insights 
solve actual business problems. Continuous real 
time data arrives at very high rate from various 
remote sources which should be processed and 
analysed  simultaneously.   

Analytics falls along a spectrum; one 
end is batch analytical applications (Hadoop 
based workloads) which  are used for complex, 
long  running analyses. They tend to have slow 
response time. Real-time  analytical applications 
forms the other end of the spectrum. It provides 
faster light weight analytics with low latency 
and high availability requirements by offering 
distribution computation facilities. Several such 
applications include share market and stock 
trading, Web traffic processing, Network 
monitoring, Sensor based monitoring, Click 
streams, Social media and log data analyses etc., 
Issues in real time analysis include scalability, 
processing storage, continuous streaming data, 
need for special computational  powers. 
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II. DISTRIBUTED  STREAM  
PROCESSING SYSTEMS 

Stream processing is the real-time 
processing of data continuously, concurrently, 
and in a record-by-record fashion. It treats data 
not as static tables or files, but as a continuous 
infinite stream of data integrated from both live 
and historical sources. It continuously performs  
mathematical or statistical analytics using 
“continuous queries”. Stream processing takes 
the inbound data while it streams through the 
server. It also connects to external data sources, 
and allows applications to incorporate selected 
data into its flow, and can update an external 
database with processed information. Input 
arrives very rapidly and there is limited memory 
to store the input. Algorithms have to work with 
one or few passes over the data, space less than 
linear in the input size or time significantly less 
than the input size.  

Distributed Stream Processing 
Systems(DSPS), offer a highly scalable and 
dynamically configurable platform for time-
critical applications. DSPS have the ability to 
process huge volumes of data with very low 
latency on clusters of commodity hardware. 
Streaming applications are represented by 
Directed Acyclic Graphs (DAG), where vertices 
called processing elements, representing 
operators and edges called streams, representing 
the data flow from one  processing element to 
next. DSPS consists of large number of 
Processing Nodes (PN). Applications are 
deployed on PNs as a network of operators or 
Processing Elements (PEs).The grouping in 
DSPS is usually implemented by partitioning 
the stream by several methods such as key 
grouping, shuffle grouping, field grouping, 
partial key grouping, global grouping, none 
grouping, direct grouping, local grouping and 
more.  

Data streams are feed into Distributed 
Stream Processing Systems (DSPS). Each 
processing element perform some operation on 
the input stream such as  filter, aggregate, 
correlate, classify and transform. In order to 
carry out the computation, the PE uses 
computational resources of the PN on which it 
resides. These resources are finite, and are 
divided among the PEs residing on the node. 

The output of this computation could alter the 
state of the PE, produce an output with the 
summarization of the relevant information 
derived from (possibly multiple) input streams 
and the current state of the PE. 

Apache storm, a Distributed Stream 
Processing System is scalable, fault-tolerant and 
is easy to set up and operate. Storm’s use cases 
include real time analytics, online machine 
learning, continuous computation, distributed 
RPC, ETL and more.It relies on a cluster of 
heterogeneous machines. According to Storm 
architecture, a machine, called a worker node is 
composed of workers. Each worker contains a 
variable number of slots. A slot is an available 
computation unit which has dedicated CPU re-
sources. When an operator is affected  to a slot, 
it is encapsulated  in an executor. According to 
our generic architecture, processing units are 
equivalent to workers. Each operator 
corresponds to an executor.  

Continuous queries are represented as 
user-defined  workflows, denoted as topologies. 
These topologies are also workflows but 
vertices  belongs to two main categories: Spout 
and Bolt. Spouts are data transmission nodes 
and can be conceptualized as multiplexers. They 
provide an interface between sources and 
processing environment. After getting 
connected to one or many sources, they transmit 
data streams to one or many Bolts. Each Bolt 
execute a user-defined operator which is 
considered as atomic. Storm does not include 
primitives but provides programming patterns. 
Basically, Storm does not support stateful 
operators, so naturally does not support window 
incremental processing, but they can be added 
through API extension. Allocation of executors 
on workers is achieved by a scheduler 
minimizing CPU and memory usage. Storm 
targets applications handling huge volume of 
data like social data management. 
 
 

III. PROACTIVE ONLINE SHUFFLE 
GROUPING 

 Proactive Online Shuffle Grouping 
(POSG), an approach in shuffle grouping that 
aims at reducing the overall completion time of 
incoming tuples by accurately scheduling it on 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017                                                                   26 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

available operator instances thereby avoid 
imbalances. POSG is the first solution that 
explicitly addresses the problem of imbalances 
in parallel operator instances under loads 
characterized by non-uniform tuple execution 
times. 
 The basic idea behind POSG algorithm 
is simple. By measuring the amount needed by 
each operating instances to process every tuples, 
we can schedule incoming tuples accordingly, in 
order to minimize the completion time. This 
approach works in the case of non-trivial 
streaming settings. However, POSG uses 
sketches in order to keep track of huge amount 
of information regarding the tuple execution 
time and then applies a greedy online 
multiprocessor scheduling algorithm to 
dynamically schedule incoming tuples to 
operator instances. Concurrently, the status of 
each  instances is monitored in a smart way 
which in turn used to detect possible changes in 
the input load distribution that can be adapted 
coherently. Therefore, POSG improves 
performance in terms of tuple completion time. 
 To be clearer, if the execution time of 
each tuple on available operator instance is 
known, it is easy to schedule the execution of 
incoming tuples on such instances with the aim 
of minimizing average per tuple completion 
time at the operator instances. However, the 
common way of calculating the execution time 
of each tuples is by building cost model for 
tuple execution and then utilizing it to schedule 
the incoming load proactively. But building an 
accurate cost model requires large a-priori 
knowledge on the system. Furthermore, once 
the system is built, it is hard to handle changes 
in the system or input stream characteristics at 
runtime. Another alternative is to periodically 
collect the load of operator instances at 
scheduler, which becomes reactive scheduling, 
where the input tuples are scheduled on the 
basis of previous load state of the operator 
instances. 
 Therefore, POSG computes the 
estimation by summing the estimation of 
execution time of each tuples assigned to each 
operator instances. A greedy scheduling 
algorithm is then fed with estimations for all the 
available instances, which can be enabled by 

building a sketch at each operator instances. 
That sketch will track the execution time of the 
tuples it process. Any change in the stream or 
instance(s) affects the tuples execution time on 
some instances. Therefore, the concerned 
instance(s) will forward the updated sketch to 
the scheduler, which allows the scheduler to 
estimate the tuples execution time correctly. 
This solution does not requires any a-priori 
knowledge. This approach is also adaptable to 
continuous changes in the input distribution or 
on the instances load characteristics. Therefore, 
this solution is proactive and avoids imbalance 
rather than detecting and then attempting to 
correct it. 

IV. COUNT-MIN SKETCH ALGORITHM 

  The Count-Min (CM) Sketch is a 
compact summary data structure capable of 
representing a high-dimensional vector and 
answering queries on this vector with strong 
accuracy guarantees. Such queries are at the 
core of many computations, so the structure can 
be used in order to answer a variety of other 
queries, such as frequent items (heavy hitters), 
quantile finding, join size estimation, and more. 
Since the data structure can easily process 
updates in the form of additions or subtractions 
to dimensions of the vector (which may 
correspond to insertions or deletions, or other 
transactions), it is capable of working over 
streams of updates, at high rates. The data 
structure maintains the linear projection of the 
vector with a number of other random vectors. 
These vectors are defined implicitly by simple 
hash functions. Increasing the range of the hash 
functions increases the accuracy of the 
summary, and increasing the number of hash 
functions decreases the probability of a bad 
estimate. These trade-offs are quantified 
precisely below. Because of this linearity, CM 
sketches can be scaled, added and subtracted, to 
produce summaries of the corresponding scaled 
and combined vectors.  

The CM sketch is simply an array of 
counters of width w and depth d, CM[1, 1] . . . 
CM[d, w]. Each entry of the array is initially 
zero. Additionally, d hash functions  

h1 . . . hd: {1 . . . n} → {1 . . . w} 
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are chosen uniformly at random from a 
pairwise-independent family. Once w and d are 
chosen, the space required is fixed: the data 
structure is represented by wd counters and d 
hash functions (which can each be represented 
in O(1) machine words. 
Update Procedure: Consider a vector a, which 
is presented in an implicit, incremental fashion. 
This vector has dimension n, and its current 
state at time t is a(t) = [a1(t), . . . ai(t), . . . an(t)]. 
Initially, a(0) is the zero vector, 0, so ai(0) is 0 
for all i. Updates to individual entries of the 
vector are presented as a stream of pairs. The ‘ 
t’  update is (it, ct), meaning that  
ait (t) = ait (t − 1) + ct  
ai  (t) = ai 0 (t − 1) i’= it  
This procedure is illustrated in Figure 1. In the 
remainder of this article, t is dropped, and the 
current state of the vector is referred to as just a 
for convenience. It is assumed throughout that 
although values of ai increase and decrease with 
updates. 
 
 

 
 
Figure 1: 
Count 
Min-Sketch 

Each item  i  is mapped to one cell in 
each row of the array of counts: when an update 
of ct to item it arrives, ct is added to each of 
these cells each ai ≥ 0. The Count-Min sketch 
also applies to the case where ais can be less 
than zero, with small factor increases in space. 
Here, details of these extensions are omitted for 
simplicity of exposition (full details are in [5]). 
When an update (it, ct) arrives, ct is added to 
one count in each row of the Count-Min sketch; 
the counter is determined by hj. Formally, given 
(it, ct), the following modifications are 
performed: ∀1 ≤ j ≤ d : CM[j, hj (it)] ← CM[j, 
hj (it)] + ct Because computing each hash 
function takes O(1) (constant) time, the total 
time to perform an update is O(d), independent 
of w. Since d is typically small in practice, 
updates can be processed at high speed. 

 
 

V. GREEDY ONLINE SCHEDULER 
ALGORITHM 

 A problem in load balancing is 
scheduling the important tasks to the identical 
machines and thereby minimizing the execution 
time i.e., the Multiprocessor Scheduling 
problem. However, the algorithm that is optimal 
for minimizing total flow time often starves 
some individual tasks. This problem becomes 
more complex when these tasks have priorities. 
To overcome these issues, in POSG, greedy 
online scheduler algorithm is used to schedule 
online independent tasks on non-uniform 
machines aiming to minimizing the average per 
task completion time. Online means the 
scheduler does not know the sequence of tasks it 
is going to handle in previous. The Greedy 
Online Scheduler algorithm assigns the 
incoming task to the instance having less load. 

In POSG, each operator instances maintains two 
count-min sketch matrices, where the first 
matrix monitors the frequency of rules and the 
second matrix maintains the cumulative 
execution time of rules. Both the matrices 
shares same size and  hash  function.  Both the 
matrices are updated each time after tuple 
execution by the operator instances. 

VI . CONCLUSION 

In this paper, various approaches for 
stream processing in stateless operator instances 
have been discussed. Shuffle grouping concepts 
are briefly discussed along with the current 
issues. Alternatives for the above stated 
problems such as cost model estimation and 
reactive scheduling were stated along with their 
drawbacks. Then, Proactive Online Shuffle 
Grouping, a novel approach to shuffle grouping 
aimed at reducing the overall tuple completion 
time by scheduling tuples on operator instances 
on the basis of their estimated execution time 
was introduced and discussed. POSG makes use 
of sketch data structures to keep track of tuple 
execution time on operator instances in a 
compact and scalable way. This information is 
then fed to a greedy scheduling algorithm to 
assign incoming load. Thus, POSG provides 
important speedups in tuple completion time 
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when the workload is characterized by stateless 
operator instances.  
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